Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370818

RESUMO

Protein kinase C (PKC) plays a key role in modulating the activities of the innate immune cells of the central nervous system (CNS). A delicate balance between pro-inflammatory and regenerative activities by microglia and CNS-associated macrophages is necessary for the proper functioning of the CNS. Thus, a maladaptive activation of these CNS innate immune cells results in neurodegeneration and demyelination associated with various neurologic disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Prior studies have demonstrated that modulation of PKC activity by bryostatin-1 (bryo-1) and its analogs (bryologs) attenuates the pro-inflammatory processes by microglia/CNS macrophages and alleviates the neurologic symptoms in experimental autoimmune encephalomyelitis (EAE), an MS animal model. Here, we demonstrate that (2S,5S)-(E,E)-8-(5-(4(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB), a structurally distinct PKC modulator, has a similar effect to bryo-1 on CNS innate immune cells both in vitro and in vivo, attenuating neuroinflammation and resulting in CNS regeneration and repair. This study identifies a new structural class of PKC modulators, which can therapeutically target CNS innate immunity as a strategy to treat neuroinflammatory and neurodegenerative disorders.

2.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693473

RESUMO

In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance between myelin repair and demyelination/neurodegeneration. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the critical lack of therapies promoting remyelination and slowing progression in MS. Here, we found that the protein kinase C (PKC)-modulating drug bryostatin-1 (bryo-1), a CNS-penetrant compound with an established human safety profile, produces a shift in microglia and CNS macrophage transcriptional programs from pro-inflammatory to regenerative phenotypes, both in vitro and in vivo. Treatment of microglia with bryo-1 prevented the activation of neurotoxic astrocytes while stimulating scavenger pathways, phagocytosis, and secretion of factors that promote oligodendrocyte differentiation. In line with these findings, systemic treatment with bryo-1 augmented remyelination following a focal demyelinating injury in vivo. Our results demonstrate the potential of bryo-1 and functionally related PKC modulators as myelin regenerative and neuroprotective agents in MS and other neurologic diseases through therapeutic targeting of microglia and CNS-associated macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...